
Mempool optimized fees, and the correlation
between user costs, miner incentives, and block

capacity

Karl-Johan Alm <karl@dglab.com>
DG Lab

October 31, 2017

Abstract

We have investigated the correlation between fees, miner incentives, and
block capacity in Bitcoin. In particular, we look at how fee estimators can be
optimized to more precisely pinpoint the fee rate required to get into blocks in
the near future, as well as how better overview of mempool state can be helpful
in a variety of (sometimes hostile) situations.

Throughout the report, we are deriving results via mempool statistics, some-
times from models and sometimes from simulations on real data. In Bitcoin
Core, and many other wallets, fee estimations are done exclusively using past
block statistics, and the mempool state is ignored completely.

While the results will in some cases undershoot, our results show that proper
use of RBF gives great potential to taking the mempool into account during fee
calculation.

A consequence of optimizing fees is a potential drop in revenue for miners.
Currently, user fees comprise about 11% of miner revenue, and with optimiza-
tions this number would drop even lower. With subsidy halvings every four
years, it is important to address how miner profits and user costs correlate, in
particular how they are related to transaction throughput.

We investigate consequences of block capacity changes, and conclude that
a capacity increase is not an adequate solution at this point in time, as it
will only minimally affect the miner revenue at the cost of less security, more
centralization, and the incentivization of a remine attack in low peak situations.
We note that a higher block capacity does, however, make certain hostile attacks
more difficult and costly.

We also investigate the consequences of an empty mempool once subsidy
has become a less significant part of the miner incentive. We conclude that the
network benefits greatly from having a mempool with a backlog, and that this
is an inherent security feature of Bitcoin that should be preserved.

CONTENTS

1 Introduction 3

2 Block and mempool model 4
2.1 Block size, miner profit, and user cost 4

2.1.1 10 BTC per block assumption 5
2.1.2 $65,000 USD per block assumption 6

2.2 Interruptions and consequences of mempool exhaustion 8
2.2.1 The for-profit and essentially free reorganization attack . 8
2.2.2 Mining cost vs transaction (fee) throughput 8

2.3 A note on subsidy halving . 9

3 Transactions and the mempool as a market 10
3.1 Transaction throughput and mempool market 10

3.1.1 Overly conservative fee estimators 11
3.1.2 User interface . 11
3.1.3 Time-locked smart contract expirations 12
3.1.4 Distributed attack on time-locked contracts 15

4 Fee rate optimization via the mempool state 18
4.1 Automatic transaction bumping via RBF 18
4.2 Combining fee rate estimators . 19
4.3 Results . 20

5 Conclusions 24

6 Acknowledgements 26

A Derivation of fee function given in Equation 2.3 27

B Impact of subsidy halving 28

2

CHAPTER

ONE

INTRODUCTION

This report investigates the correlation between user cost, miner incentive, and
block capacity. The viability of using the mempool to optimize fee rates for
transactions, as well as using the mempool to respond to certain attacks is
explored.

It begins in Chapter 2 by building a model for the mempool and block
generation. It explores how the block capacity would change given certain as-
sumptions, and how this would relate to various constraints (2.1), such as a
minimum required bitcoin per block fee for the miners (2.1.1), or a minimum
profit expressed in USD (2.1.2), as well as how this would change with time as
the subsidy drops. The chapter ends with an examination of the consequences
of a blockchain system where all transactions are mined at all times, and some
important security related problems are derived (2.2).

In Chapter 3, the opposite approach is examined, where the mempool is
considered a market. Here, the viability of certain attacks on layer 2 tech is
discussed (3.1.3).

In Chapter 4, a fee rate optimization using the mempool is discussed, and
conclusions are drawn in Chapter 5.

3

CHAPTER

TWO

BLOCK AND MEMPOOL MODEL

This chapter builds a model around the mempool, block capacity, and user
(transactor) cost. Note that much of it is assuming that the mempool is empty,
and that every new block consumes the contents of the mempool at the given
time.

2.1 Block size, miner profit, and user cost
Let ℘ be the collection of transactions ~τ in the mempool at some given point in
time. The two functions ω(τi) and FR(τi) give the weight1 and fee rate of the
transaction τi.

y =
∑
τ∈℘

ω(τ) (2.1)

is the aggregate weight of all transactions in the mempool, and

yFR≤x =
∑
τ∈℘

ω(τ)∀(FR(τ) ≤ x) (2.2)

is the aggregate weight of all transactions τ which satisfy FR(τ) ≤ x for
some x, i.e. all transactions with a fee lower than or equal to x.

Using a naïve, perfect knowledge no-RBF universal fee estimator2, the fee
rate becomes

1SegWit unit for size, sometimes written as “WU” for “weight unit(s)”; it is often approx-
imated so that 1 byte = 4 WU in this report, even though this is not entirely accurate. ω
is also used instead of “WU” to express weight units in this report, but this is by no means
conventional.

2Naïve because it assumes no competing transactions will appear; perfect knowledge be-
cause it sees the entire mempool of the network; no-RBF because it would otherwise bump
its fee repeatedly rendering the algorithm essentially worthless; universal because all other
transactors on the network are assumed to use exactly the same algorithm.

4

5 Block and mempool model

f(y, Z) =
1

4
1.1b

y
0.95Z c satoshi/ω (2.3)

where Z is the block capacity in weight units.3
The per-block profit without subsidy simply becomes

f(y, Z)Z satoshi (2.4)
which, for a just-full mempool4 simplifies to 1

4Z satoshi.
In other words, a 4 MWU = 1 MB block will on average get 1 million satoshi

≈ $55 USD5.
In contrast, the current miner profit from subsidy alone (i.e. excluding all

transaction fees) is roughly $65,000 USD.
We will return to f(y, Z) but before we do, we will take a look at two cases

related to miner profit: the first case is for a fixed BTC income per block, and
the second case is for a fixed USD income per block.

2.1.1 10 BTC per block assumption
We explore how bitcoin will change when the mempool is optimal w.r.t. the
blocks, i.e. no transaction backlog, and every block filled to capacity.

If we make the assumption that miners desire 10 bitcoins per block after the
next halving in Y = 2020 (they get 12.5 as of this writing), we begin by defining

r(s) = 10.0− s (2.5)

as the fee required per block after subsidy s, where

s =
12.5

2b
Y −2016

4 c
(2.6)

(Y being the current year) giving us rs(s) = 108r(s) as the fee required in
satoshi.

The satoshi/weight (assuming a transaction takes up 1200 weight) becomes

F (p, c) =
p

1200
· 10

8

c
=

108p

1200c
(2.7)

where p is the transaction fee in US dollars, and c is the current USD/BTC price.
E.g. for p = $.20, c = $5500 (20 cents at current price of $5500 USD/BTC),
F (p, c) = 108·0.2

1200·5500 = 3.03 satoshi/ω, or 0.76 satoshi/b.
The weight required at the given fee F (p, c) to achieve the goal of rs(s) satoshi

for the block is expressed as

Z(s, p, c) =
rs(s)

F (p, c)
=

1200(10.0− s)c

p
(2.8)

3The way this function is derived is given in Appendix A on page 27.
4Transactions are always mined at the next block, and blocks are always exactly full.
5Taking 1 BTC = $5500 USD

6 Block and mempool model

With s = 6.25 (2020 through 2023), p = $.20, c = $5500, we get that the
necessary block size in bytes is

1

4
Z(6.25, 0.20, 5500) =

1

4

(
1200(10.0− 6.25)5500

0.20

)
= 30937500,

i.e. roughly 30 MB.
This hits a maximum when s = 0 (no subsidy) at roughly 80 MB.
If the users aren’t willing to pay the 20 cents, the block size increases pro-

portionately, where if p is halved, the block size is doubled (and conversely,
if p is doubled, the block size is halved). If the price of bitcoin relative to
USD increases, the block size increases in the same fashion, and if it drops,
the block size drops. E.g. at $1,000,000 USD/BTC, the block size would cap
at 1

4 · 1200·10·1000000
0.20 = 14 GB (but the miners would get $10 million USD per

block).

2.1.2 $65,000 USD per block assumption
We approach the problem from the point of view of a given revenue in USD6.
We begin by rewriting r(s) defined in Equation (2.5) as

r(s, c) =
65000

c
− s (2.9)

e.g. for c = $5500 USD/BTC, s = 6.25 BTC, we get r(s, c) ≈ 5.57 BTC.
The miner revenue would simply be 65000

c ≈ 11.82 BTC.
Inserting this into Equation (2.8) we get

W (s, p, c) =
rs(s, c)

F (p, c)
=

108
(
65000

c − s
)(

108p
1200c

) =
1200

p
(65000− sc) (2.10)

The block size Z(s, p, c) = 1
4W (s, p, c) grows inversely proportionately to p

(the price users are willing to pay in fees for a transaction), and shrinks with
subsidy s and price of bitcoin c; however, as the subsidy drops, the impact of the
price of bitcoin drops proportionately until it stops having any effect7. Table 2.1
shows a matrix for the next subsidy halving (s = 6.25) and (right-most column)
for the case s = 0.

We can also display the case s = 0 with a variable profit value, so that
r(0, c, ω) = ω

c , as shown in Table 2.2.
6Here we picked the current subsidy of 12.5 BTC in USD at $5500 USD/BTC.
7This is not entirely obvious, but since we are defining user fee in terms of USD, and miner

profits in USD, the amount of satoshi paid for a transaction will change, but proportionately
to the miner profit. The equality 65000 · 1

c
− s = p

1200
· 1
c
· Z has 1

c
(BTC per USD) on both

sides, which cancel out when s = 0, leaving 65000 = p
1200

· Z, and Z = 65000·1200
p

, which is
unaffected by changes in c.

7 Block and mempool model

Block sizes for s = 6.25 for s = 0
Price USD/BTC Any price

Avg fee (USD) $6k $7k $8k $9k $10k $x
$0.10 77 MB 61 MB 43 MB 25 MB 7.2 MB 186 MB
$0.20 39 MB 30 MB 21 MB 13 MB 3.5 MB 93 MB
$0.50 16 MB 12 MB 8.9 MB 5 MB 1.4 MB 37 MB
$1.00 7.9 MB 6.1 MB 4.3 MB 2.5 MB 0.7 MB 19 MB

Table 2.1: The block size for various average transaction fees vs the price of
bitcoin, with a fixed subsidy s = 6.25 (2020-2023) and (right-most column)
when s = 0, at which point the price no longer matters.

Block sizes for s = 0
Miner profit threshold

Avg fee (USD) $20k $50k $100k $250k $500k
$0.10 57 MB 143 MB 286 MB 715 MB 1.4 GB
$0.20 29 MB 72 MB 143 MB 358 MB 715 MB
$0.50 11 MB 29 MB 57 MB 143 MB 286 MB
$1.00 5.7 MB 14 MB 29 MB 72 MB 143 MB

Table 2.2: The block size for various average transaction fees and various miner
profit thresholds, given a zero subsidy (s).

8 Block and mempool model

2.2 Interruptions and consequences of mempool
exhaustion

With no subsidy left, a miner will not spend their resources on finding a block
unless the fees in the publicly known unmined transactions are at minimum
higher than the electricity costs of doing so.

As such, the higher the block size, the more likely it is that the chain will
have interruptions, where no block is being mined by anyone. Miners would
switch their equipment to some competing chain with the same proof-of-work
(if any such chain existed) or put the mining equipment in “economy mode” to
minimize costs.

This minimum requirement is additionally different per region, because elec-
tricity cost is different. As such, this state will lead to centralization of mining
power, to where a region with lower electricity costs will represent a dispropor-
tionately high portion of the hashpower.

2.2.1 The for-profit and essentially free reorganization at-
tack

This presents a major security problem. It would be profitable for a miner to
purposefully drop the last block (if it was mined by someone else) and remine
it, to gain the transaction fees from it, while the rest of the network is waiting
for transactions to satisfy the above requirement. The miner could then mine
an extra block on top of his remined one and the two blocks would replace the
current tip as the chain with the highest amount of work.

He could do this for an arbitrary number of blocks if he has enough hash-
power, because everyone else will be waiting for transactions to cover their
expenses after every “honest” block.

The difficulty of the chain would drop as well, because miners were not min-
ing blocks every ten minutes, further reducing its security, and further making
the above attack more easy to pull off.8

To counter this attack, miners of a block would need to keep mining an
empty block so that their chain tip remained protected. This would only work
if no other malicious miner had more hashpower, and even if, the miner would
be mining at a loss. To prevent this, miners would be enticed to form coalitions
or enter into contracts with other miners to promise to protect each others’
blocks, leading to a higher degree of centralization.

2.2.2 Mining cost vs transaction (fee) throughput
One big argument against the above scenario is that the cost to mine a block
grows with time, and this growth only needs to be slower than or equal to the

8Assume that most miners need to wait 60 seconds before they are able to mine at a profit.
The average time to find a block would then be 9 minutes, which would be a reduction of
10% in hashpower, and consequently a 10% reduction in network difficulty compared to the
available hashpower.

9 Block and mempool model

transaction (fee) throughput for the miner to be profitable. I.e. if a miner finds
a block after a few seconds, the revenue would only need to cover the few seconds
worth of electricity usage. Because electricity cost varies, this would mean some
miners would profit from mining earlier than others. That aside, this depends
on the arguably unstable condition that transaction (fee) throughput is constant
at all times, which it is not; it is experiencing highs and lows and this trend
will most likely grow in scale with adoption. In other words, miners will still
benefit from not mining during low peak periods, for the case where the blocks
have sufficient capacity to include all transactions at high peaks.

One might assume this is an argument for dynamic block sizes, but this
would accomplish nothing. A static block size that would fit all transactions at
peak time would be just as effective even if only a fraction of its capacity were
used during the low peaks.

Assuming Bitcoin is successful, one might argue that none of this would ever
pose a problem, but if the blocks are large enough to include all transactions at
all times, there will inevitably be periods of high-peak activity and periods of
low-peak activity (VISA today averages roughly 2,000 transactions per second,
but has a capacity of 24,0009). It would only take one low-peak period to
encourage the voluntary reorganization attack mentioned above by a miner.

2.3 A note on subsidy halving
A perhaps unusual amount of emphasis is placed on the subsidy halving and its
effect on the dynamics of Bitcoin scaling in this report. Since the subsidy will
not vanish entirely until roughly the year 2143, this may seem like making a
mountain out of a pebble. However, it should be noted that due to the nature
of the subsidy halving process, the highest impact will be seen earlier — for
instance, the subsidy will drop by a total of 596 satoshi in the entire final 43
year period 2100 - 2143; it will be lower than 0.001 bitcoin from 2072 and
onward, and it will drop below 1 bitcoin per block as soon as 2032, 15 years
from now.

See Appendix B for additional details on how subsidy halving and fees might
correlate.

9https://usa.visa.com/run-your-business/small-business-tools/retail.html

https://usa.visa.com/run-your-business/small-business-tools/retail.html

CHAPTER

THREE

TRANSACTIONS AND THE MEMPOOL AS A
MARKET

This chapter takes the approach of looking at the mempool as a market, and
describes issues with this approach, such as overly conservative fee estimators
(3.1.1), and issues related to the user interface and user experience in software
(3.1.2). It also investigates the viability of a specific form of attack on time
locked smart contracts such as the Lightning Network and atomic swaps (3.1.3).

3.1 Transaction throughput and mempool mar-
ket

We return to f(y, Z) originally defined in Equation (2.3) on page 5.

f(y, Z) =
1

4
1.1b

y
0.95Z c satoshi/ω (3.1)

We define a transaction throughput ∆y given in weight per block10. Assum-
ing no mempool backlog,

• If ∆y < Z, the next block will not be full. It will be at ∆y
Z capacity where

y = ∆y, and the miner will get 1
4∆y satoshi according to Equation (2.4).

• If ∆y = Z, the next block will be full and the miner simply receives
1
4Z satoshi.

• If ∆y > Z, the next block will be full. There will be a growing mempool
backlog for as long as this remains the case, where

yt+1 = yt +∆yt − Z (3.2)
10Strictly speaking, it is weight per 10 minute interval, disregarding discrepancies in the

time between blocks, which varies quite a bit.

10

11 Transactions and the mempool as a market

In the last case above (Equation (3.2)), we have appended a time subscript t
to the mempool size y and the corresponding transaction throughput ∆y. In the
simplest case, ∆y remains fixed for all t, and yt+1 simply becomes (∆y − Z)t,
after t blocks.

As t → ∞, so does y → ∞, and consequently f(y, Z) = 1.1b
y

0.95Z c → ∞. In
other words, we approach infinitely high fees if the transaction throughput per
block exceeds the block capacity.

We note here that, if RBF was enabled, every participant would repeatedly
bump the fee of their transaction as soon as y > 0.95Z in order to beat the
bottom 5% threshold. Even at t = 0, this bumping would continue without
bounds moving toward ∞ in the same fashion, only faster. The only real reason
why t matters at all is because each block has a number of ever growing “los-
ing” transactions in the mempool that were created too early to catch the real
threshold.

As the fee rate increases, our willingness to transact decreases. It becomes
clear that f(yt, Z) breaks down as ∆yt ≥ Z.

We thus redefine this as f(x, y, Z) = min(x, f(y, Z)), where x is the maxi-
mum fee rate the user is willing to pay.

We can imagine grouping x into ranges like “emergency”, “high priority”,
“normal priority”, and “low priority”, where the ranges vary depending on what
people are paying in fees right now. Rational miners would start from the top
and include transactions until they hit the block capacity.

This approach works in standard cases, but has some problems.

3.1.1 Overly conservative fee estimators
One main problem is when fee estimators are suboptimal and/or overly conser-
vative. With RBF support, the ability to fine-tune fee rate is better than ever,
but this is not taken advantage of by most, if any, wallets at this time.11

Related to this is that the fee estimators currently do not take into account
the amount being sent. Paying a $1 fee if you are sending a thousand dollars is
more acceptable than if you are sending $2, and aiming for a close-cutting fee in
the latter case would most likely have proportionately acceptable consequences.

3.1.2 User interface
Another problem is that a lot of users don’t realize they actually set the fee rate
themselves. This ties in with the previous problem, in where wallets tend to be
overly conservative in their estimates12. Better education of users and better

11Bitcoin Core 0.15 will use economic fee estimation for transactions which have RBF set,
but that’s the only case of a wallet we’ve seen so far. Peter Todd’s OpenTimestamps
(https://opentimestamps.org/) is one of the few systems using it today.

12Possibly to prevent a storm of angry users asking why their transactions are not being
confirmed.

https://opentimestamps.org/

12 Transactions and the mempool as a market

UI in wallet software would possibly remedy this problem, especially if wallets
turned RBF on by default13.

We will expand on this in Chapter 4.

3.1.3 Time-locked smart contract expirations
Many smart contracts, such as the Lightning Network, depend on the ability to
detect and react to a malicious transaction, usually by transferring the channel
balance to oneself. A too intensive mempool market might allow an attacker
to steal funds from a channel. We will describe the attack, and examine its
viability below.

Old channel state attack

• A channel with an ` block locktime14 is established between participants
A and B with c bitcoin funded by A, through a funding transaction τ0
with an initial state/transaction τ0 of c → A; 0 → B.

• A pays d bitcoin for some service by transferring funds to B over the
channel, creating state/transaction τ1 of c− d → A; d → B (d ≤ c).

• A makes a malicious attempt to close the channel by broadcasting τ0, then
proceeds to spam the network with lots of transactions.

• B attempts to claim the funds, but the mempool is overcrowded. A con-
tinues to spam the mempool, adjusting their fees to always keep B’s trans-
action from being mined.

• After ` blocks, if A has succeeded in continuously making enough trans-
actions to bump B’s claim transaction out of any blocks, they can now
attempt to claim the funds before B manages to do so.

• If they succeed, they have made d− fA in profit, where fA is the sum of
the fees paid to maintain the mempool fee rate required to keep B’s claim
transaction out.

This depends on a number of things: d must be so large that A would benefit
from doing this, despite spamming the network for the duration of the locktime.
It would be more beneficial to A if the mempool was already under heavy load
from external sources, assuming τ0 is confirmed reasonably fast.

B can counter using RBF by simply tracking the mempool and ensuring
their transaction makes it into the block. B is also at a great advantage due to

13This would allow users to fix “too low fee” mistakes, but they could still end up paying a
very high fee by mistake, in which case RBF would not help.

14A feature which states that, once the transaction has been confirmed in a block, it cannot
be spent until at least this number of blocks have been mined on top of the block it is contained
in. This lets users put a “hold” on transactions for a given period, so they have time to react
to it when it appears in the blockchain.

13 Transactions and the mempool as a market

the fact B simply needs one transaction to go through, while A needs to ensure
the whole mempool is “covered” without letting B’s transaction in.

The higher the locktime count ` is, the harder and more costly it is for A to
perform this attack.

The risk offset is usually a deterring factor to attempting this attack, as A
would gain d bitcoin whereas B would gain c, where c ≥ d. If c − d ≈ 0, the
only financial risk for A is fA, especially if A’s identity is unknown.

The attack works best for channels with larger amounts, but it works with
any number of B’s, i.e. A may close all their channels in this manner and try to
keep all B claim transactions out (selectively abandoning the ones which would
require a too-high fee).

Viability

We will first simplify by assuming that B makes one transaction and does not
bump it to respond to A’s spam transactions.

Let τB be the claiming transaction x → B, which A must not allow to
confirm for their attack to succeed, and ~τAt be the collection of spam transactions
emitted by A at time t.

yt is the transaction weight at time (block) t, for transactions ~τt, assumed
to be at their highest tolerated fee rate, and ∆yt is the influx of transactions at
time t.

At each time point, Z weight is removed in most profitable order as in
Equation (3.2), i.e.

yt+1 = yt +∆yt − Z

Of the transactions remaining, y>B
t = yt,FR>FR(τB) represents the portion

of transactions which would prevent τB from confirming, and∑
i

ω(τAt,i) + y>B
t > Z (FR(τAt,i) = FR(τB) + α; α > 0) (3.3)

must hold for each time point t.
For each time point t > 0, fee estimators will converge on estimations FR >

FR(τAt−1,i) > FR(τB) and the weight requirement (first component of Equation
(3.3)) will drop in response to a growth in y>B

t (second component). In other
words, it would become cheaper each block to spam the network for A, assuming
enough transactors were willing to pay FR > FR(τB).

Because y>B
t grows as FR(τB) shrinks, the viability increases proportion-

ately to the initial claim transaction fee rate.
The total fees fA paid by A in order to gain d bitcoin becomes

fA =
t∑

i=0

∑
j

ω(τAi,j) · FR(τAi,j)

The attack is profitable for A as long as fA < d, after which A begins to
lose money. However, it will always be beneficial for A if τA manages to make

14 Transactions and the mempool as a market

it into a block, as the alternative is that A ends up with a balance −fA, instead
of c− fA.

It is safe to assume that B would use a higher than average fee rate, as they
know that A is attempting to steal the funds, so this attack may only be viable
if the fee rate experiences a jump soon after τB is broadcast. This depends on
how much transactors are willing to spend during this high-volume period. The
more transactors willing to pay higher than FR(τB), the cheaper the attack
becomes.

Replace-By-Fee (RBF)

With RBF, τB becomes τBt , and B can now bump FR(τBt) as appropriate, but
this functionality must be present in Lightning node implementations, and the
initial transaction τB0 must have RBF enabled. By observing the mempool, it
is possible to respond almost instantly to where15

FR(τBt) = FR(τAt,i) + β (β > 0). (3.4)

This would require A to RBF-bump τAt,i in response, so that they again
satisfy the requirement in Equation (3.3). Each time B does this, there is a
chance that τBt is mined before all of τAt,i have propagated, which would result
in an immediate failure for A.

In addition, the cost increase for B is

ω(τBt) · FR(τBt)− ω(τBt−1) · FR(τBt−1) ≈ (α+ β)ω(τBt) (3.5)

whereas the cost increase for A is∑
i

ω(τAt,i) · FR(τAt,i)−
∑
j

ω(τAt−1,j) · FR(τAt−1,j) (3.6)

≈ (α+ β)
∑
i

ω(τAt,i)

≈ (α+ β)(Z − y>B
t)

which, at the worst case (where y>B
t = 0), is (α + β)Z. Each time B RBF-

bumps, y>B
t becomes smaller, so it follows that A ends up paying significantly

more than B in fees each time B RBF-bumps. In fact, the deterrent D for A to
continue their attack rises in proportion to the required additional fee in order
to outbid B (Equation (3.7)).

D =
β(Z − y>B

t)

c
(3.7)

As such, B should attempt to fit β so that it (1) minimizes the direct fee cost
for B and (2) minimizes the incentive for A to continue the attack.

15The t notation is slightly abused here and in following paragraphs, to both mean “block
at point t” and to mean “the current (for t) or previous (for t− 1) fee rate”, even though the
latter case could repeat within the span of a single block.

15 Transactions and the mempool as a market

β =
Dc

Z − y>B
t

(3.8)

If the deterrent D = 1, we get that β = c
Z−y>B

t

, which would mean that A

had to pay the entire funding amount c in order to out-bump τB . This would
obviously mean B paid a very high fee, but it would basically guarantee that A
stopped their attack.

If the block weight capacity (Z) increases, the attack becomes proportion-
ately more expensive to execute, depending on transaction throughput (yt) and
fee rate acceptability among transactors (y>B

t

yt
). While the losses incurred to B

due to RBF-bumping τB will be reduced significantly in proportion to the costs
incurred to A, proper implementation of the above response mechanism in layer
2 tech software should be sufficient to deter any attempts at performing this
kind of attack.

Given this, this attack is not considered a cause for concern, but this is
under the assumption that Lightning nodes and other layer 2 technologies with
similar mechanics implement RBF bumping and auto-detection of, as well as
proper RBF-bumping in response to, spam attacks as the one mentioned above.

Note that there is a small window between the broadcasting of τ0 and the
time that it is mined into a block, in which B can broadcast τB . Most mining
nodes will group these together into a “packet”, which means either τ0 and τB

are mined together, or none of them are. Since τ0 cannot be modified, A cannot
RBF-bump it, even if RBF was enabled, and would thus have lost immediately.
A may need to make use of a mining node paid out of band to ensure B does
not see τ0 before it is mined.

Note also that B can pay one or several miners out of band to include τB

in their next block, effectively circumventing the spam attack. This relies on
benevolent actors, and relying on this method would negatively impact decen-
tralization.

Finally, note that this attack works for cross-chain atomic swaps as well (the
larger the amount the better), where the attackers reclaim their paid coins on
the sending chain by preventing the payee from claiming it within the time lock
period. In fact, this is arguably more viable than the Lightning Network case
above.

3.1.4 Distributed attack on time-locked contracts
The attack mentioned in 3.1.3 can be extended to multiple attackers A0, A1, · · · , AN

(some of which may be the same person with multiple channels) which are per-
forming a coordinated attempt to overwhelm the mempool for ` blocks, for an
aggregate profit of

∑
k(dk − fA

k).

• The attackers simultaneously broadcast τ0,0, · · · , τN,0, potentially by pay-
ing a miner out of band to include them in their next block without re-
vealing them beforehand to B0, · · · , BN .

16 Transactions and the mempool as a market

• The attackers spam the mempool in coordination, preventing τBk from
confirming.

The benefit of this approach is that each attacker need only spend

1

N
(Z − y>B

t) (3.9)

worth of weight. The attackers would most likely agree to push out all claim
transactions τBk , which means the attackers would need a fee rate greater than
max(τBk), which means some attackers would pay an unnecessarily high fee rate
compared to their required rate, in order to aid their accomplices.

To mitigate this in part, the attackers might scale the responsibility based
on the profit dk, so that Equation (3.9) becomes

dk∑N
i=0 di

(Z − y>B
t) (3.10)

i.e. so that attackers with a smaller profit would pay less in fees compared to
attackers with a large profit. This would incentivize attackers to have approxi-
mately similar profits.

This “distributed” variant of the attack is much more powerful than the
single case described in 3.1.3. Its weakness lies in the incentive to cooperate by
collectively bumping out the highest fee rate transaction in the group. There
is potential to cause the attackers a loss in profit by identifying the attack and
the participants, and to greatly bump the most profitable transaction so high
that other participants would lose money by trying to out-bump it, without
immediately RBF-bumping the other claim transactions.

The counter would be to “cut the losses” and abandon that transaction but
to attempt to fill the mempool for the remaining ones. Because the attackers
have now dropped one participant, the remaining attackers would need to cover
the mempool for the remaining transactions, increasing the overall cost of each
participant. The operation could be repeated, until the attackers give up, or
until all the transactions have been bumped so high neither of them are prof-
itable. If the defenders have accurately estimated the number of participants,
each loss-cutting transaction could be estimated fairly precisely via Equation
(3.7). This all works because of the imbalance expressed in Equations (3.5) and
(3.6), and the fact the cost of bumping for the attackers increases with each
dropped participant. It is important, however, that the fees are not gradually
increased, because whatever fees the attackers pay to uphold the attack are
permanently lost; each attacker will always want τAk to confirm, as it means
a direct ck increase in bitcoin, even if at a loss, so the closer the fee required
to bump at a given time is to ck, the less incentivized the attacker will be to
continue the attack (see Equation (3.7)).

The drawback for B is obvious. They will lose a significant amount of their
funds due to the fee race. In particular the “sacrificial” transaction mentioned
above would cause a potentially big loss for the owner.

17 Transactions and the mempool as a market

The merit of this approach is that it acts as a deterrent to attempt the above
kind of distributed attack, but it relies on the software being able to detect the
attack and coordinate an appropriate response, although this should probably
not be automatic16. More importantly, it relies on benevolent actors willing to
lose funds to deter the attackers from even trying. Some form of reward system
may assist in this, although this is outside the scope of this report.

An increase in block weight capacity would increase the cost of the attack
and weaken its viability. However, this could easily be countered by simply
having a decent network for finding accomplices, and to perform the attack on
a larger (higher N) scale.

Note again that one or several of the individual participants Bk can pay
one or several miners out of band to include τBk in their next block, protecting
themselves. Again, this relies on benevolent actors, and relying on this method
would negatively impact decentralization.

16The response would be to not attempt to RBF-beat the attackers until the sacrifice is
made, not to make an arbitrary sacrifice, as the loss would be quite large if the software
misjudged the situation.

CHAPTER

FOUR

FEE RATE OPTIMIZATION VIA THE MEMPOOL
STATE

This chapter expands on the concept of using RBF (replace-by-fee) in wallet
software in a more automatic and user friendly way, where users set a maximum
fee, rather than an explicit one (4.1), then goes into detail on how to combine the
current fee rate estimators which use block statistics, with a fee rate estimator
using the mempool (4.2).

4.1 Automatic transaction bumping via RBF
A problem with using the mempool to estimate fees is that you can never be sure
when the next block is going to be mined. If it takes less than the target of 10
minutes, you may over-estimate, and if it takes longer, you may under-estimate,
simply because transactions attempt to out-bid each other.

A natural extension to enabling RBF by default would be for wallet software
to periodically recheck the mempool and bump the transaction fee automati-
cally, which would address both of the issues mentioned above. A drawback of
this is that the wallet software needs to remain active even after sending the
transaction, but it may be sufficient for it to do the recheck-and-bump whenever
it is brought to the foreground, as users will most likely bring the application
up to check on the transaction, especially if it is urgent enough to warrant
fine-tuning.

ShouldBump(T, t, Z) = tZ < yFR≥FR(T) (4.1)

For instance, if a user wants a transaction to confirm within the next t blocks
(“target”), the wallet software may choose to bump the fee if the accumulated
weight of all transactions above itself in the mempool exceed t blocks worth of
weight (Equation (4.1), where T is the transaction being bumped, t is the target
(in blocks to confirm), and Z is the block size).

18

19 Fee rate optimization via the mempool state

Using Equation (4.1) it is trivial to derive a method for finding an optimally
minimal fee bump (Equation (4.2), where Ti represents a bumped form of the
transaction T where the fee has been increased by i).

FeeDelta(T, t, Z, x) = min(i) (4.2)
provided ¬ShouldBump(T ′

i , t, Z) ∨ FR(T ′
i) ≥ x

where T ′
i = {T ;FR(T ′

i) = FR(T) + i}

A wallet would make periodic checks at appropriate times by calling FeeDelta
on each unconfirmed transaction; if the resulting value is greater than 0, the
transaction is bumped. Since the user has given a maximum acceptable fee,
the transaction will never exceed acceptable values, no matter what happens
(unless the user increases the maximum).

Note that even a full node will not see the entire mempool, but a subset of
it. This affects the accuracy of FeeDelta and ShouldBump proportionately.

4.2 Combining fee rate estimators
In reality, at least in the case of Bitcoin Core, wallets do not use the mempool
state at all when estimating fees, contrary to this report which has only been
using the mempool up until this point. Instead, most wallets look at past
blocks and use statistics to determine a fairly reliable fee rate that would put
the transaction in the next block. By using the mempool and “pretending”
to make a block from the observable transactions, a wallet can get a rough
representation of what the next block will look like, depending on how much
time passes until the next block is found.

This assumes that miners are rational and open, but there is no basis for such
an assumption. It is highly probable that miners take out-of-band payments to
include specific transactions, which would bypass the mempool market.

The mempool state for a given node is just a local state of the actual mem-
pool, sort of like an approximation of what everyone else is seeing. There is some
delay in transaction relay, and as such, the mempool is not “perfect knowledge”.

The mempool can be manipulated, and is by nature highly volatile17. Using
only the mempool to estimate fees is as such not recommended. Instead, the
fee estimation from the mempool state should be given as a lower boundary to
the regular fee estimation function(s) used, as in Equation (4.3).

f(·) = min(fMPOpt(·), fSmartEst(·)) (4.3)

In Bitcoin Core, the fee rate estimation (here called fSmartEst(·)) was im-
proved18,19 in version 0.15. It currently uses three horizons (t

2 , t, and 2t, where
17See e.g. https://www.reddit.com/r/Bitcoin/comments/764nt7/be_warned_ledger_nano_s_

transaction_accelerator/?st=J8QFCAAU&sh=3e5e642a in which a user is recommended a $7k
fee by his wallet due to mempool optimizations gone awry.

18https://github.com/bitcoin/bitcoin/pull/10199
19https://gist.github.com/morcos/d3637f015bc4e607e1fd10d8351e9f41

https://www.reddit.com/r/Bitcoin/comments/764nt7/be_warned_ledger_nano_s_transaction_accelerator/?st=J8QFCAAU&sh=3e5e642a
https://www.reddit.com/r/Bitcoin/comments/764nt7/be_warned_ledger_nano_s_transaction_accelerator/?st=J8QFCAAU&sh=3e5e642a
https://github.com/bitcoin/bitcoin/pull/10199
https://gist.github.com/morcos/d3637f015bc4e607e1fd10d8351e9f41

20 Fee rate optimization via the mempool state

t is the number of blocks until the transaction should be confirmed), each with
a different success rate (60%, 85%, and 95% respectively).

Each of these estimations is based on fee rate buckets, which are used to keep
track of when transactions in a given fee rate range were mined. There are two
modes; conservative, which has an additional requirement of 95% success rate
over a longer time horizon, and economic, which is relieved of this requirement.

This works well under normal circumstances, but tends to result in overly
high estimations when the transaction throughput drops rapidly or miners are
unusually lucky in finding multiple blocks within a short time span, i.e. when
the last couple of blocks have relatively high fees, but the mempool is relatively
empty.

Using Equation (4.3) would in many cases dampen this effect.

4.3 Results
Simulations were run based on a simple algorithm for determining the mempool-
based fee rate. These were applied according to Equation (4.3), which prevented
mempool volatility from causing a higher loss than the current smart fee esti-
mator of Bitcoin Core.

The algorithm used to determine the mempool fee begins by selecting a point
inside an imaginary block, if one was mined based on the local mempool at that
point.

P = max(0.10, (0.10 +Q+ C)× (1− 0.05T)) (4.4)

Q is 0.03 if it’s been less than 170 seconds since the last block was discovered,
and 0 if it’s been more; C is 0.05 if the estimation is conservative (i.e. not
economic); T is the confirmation target in number of blocks.

In other words, start with 10%; if the previous block was found within 2m10s,
add 3%; if the estimation is conservative, add another 5%; multiply the result
by 1 − 0.05(confirmation target), i.e. 0.95 for 1, 0.90 for 2, and so on. If the
result is lower than 10%, pick 10%.

Next, the algorithm creates a simulated block based on the mempool, which
is simply done by adding transactions in descending (most profitable first) fee
rate order until the block is full.20

The algorithm takes the list of transactions ~τ∗ in the simulated block in
ascending fee rate order (the opposite of what was used to create the block
above), and generates a fee rate estimation.

FR∗(~τ∗, P) = FR(τ∗x) x = |~τ∗|P (4.5)

This would put the transaction in the simulated block at the xth position from
the bottom.

20Note that the implementation used disregards transaction dependencies, such as where
τ1 is used as input for τ2, and both are in the mempool still. The algorithm would happily
include τ2 in the simulated block, even though τ1 is needed.

21 Fee rate optimization via the mempool state

0 1000 2000 3000 4000 5000 6000 7000
0

5

10

15

20

25

13 sat/b, Conservative

10 sat/b, Non-Conservative
9 sat/b, Conservative (MP optim)
7 sat/b, Non-Conservative (MP optim)

Figure 4.1: Overpayment in sat/b for each mode. As can be noted, the MP
optimized mode reacts much more quickly to mempool state changes, where the
non-optimized variants have a delayed reaction. Overall, the non-conservative
option saves 30%, and the conservative option saves 31% in fees.

The simulation was run over the period August through October of 2017,
with approximately 100,000 estimation attempts made for each type.

Figure 4.1 shows the average overpayment (where 0 means the transaction
went in exactly at the bottom of the next block) for 1-target transactions.

Figures 4.2 – 4.5 show number of transactions that were not confirmed after
the given number of blocks. After 1 block (Figure 4.2), there is a fair amount of
error (3.01% optimized vs 1.63% unoptimized for economic modes), but most of
these under-estimated transactions ended up being confirmed a few blocks later
(Figure 4.4). After 10 blocks, 11 unconfirmed transactions remained (Figure
4.5), most (10) of them stemming from the non-conservative estimator.

22 Fee rate optimization via the mempool state

0 20000 40000 60000 80000 100000

1117

1558

2064

2889

1.17% (1.00x), Conservative

1.63% (1.39x), Non-Conservative

2.15% (1.32x), Conservative (MP optim)

3.01% (1.40x), Non-Conservative (MP optim)

Figure 4.2: Unconfirmed transactions after 1 block over total transactions. The
Bitcoin Core 0.15 “conservative” estimation method ends up with 1117 (1.17%)
transactions not confirming, with the “non-conservative” (or “economic”) mode
getting 1558 (1.63%). The conservative method using mempool optimization
has 2064 unconfirmed (2.15%), and the non-conservative mempool optimized
has 2889 (3.01%).

0 25000 50000 75000 100000 125000 150000 175000 200000

0

42

188

418

0.10% (4.49x), Conservative (MP optim)

0.22% (2.23x), Non-Conservative (MP optim)

Figure 4.3: Unconfirmed transactions after 2 blocks over total transactions.
Here, none of the conservative remain unconfirmed, and 42 non-conservative
remain; 188 conservative/optimized, and 418 non-conservative/optimized.

23 Fee rate optimization via the mempool state

0 50000 100000 150000 200000 250000 300000 350000

00

23

63

0.02% (2.76x), Non-Conservative (MP optim)

Figure 4.4: Unconfirmed transactions after 4 blocks over total transactions.

0 200000 400000 600000 800000

00

1

10

0.00% (10.09x), Non-Conservative (MP optim)

Figure 4.5: Unconfirmed transactions after 10 blocks over total transactions.
1 conservative and 10 non-conservative optimized transactions remain uncon-
firmed. The remaining transactions have all been confirmed.

CHAPTER

FIVE

CONCLUSIONS

The assumption that all transactions are mined at all times leads to a number
of problems:

• We end up with all transactions using the minimum fee rate21. At the
current price levels, miners would get $55 USD per MB of block size per
block.

• To retain the equilibrium in terms of bitcoin per block (e.g 10 bitcoin per
block), we would need 30 MB blocks by 2020 and 80 MB blocks when
subsidy halving is completely replaced by fees. As the price of bitcoin
rises, the minimum fee rate would decrease, and as a result the block
size requirement would increase; at $1 mln USD/BTC, each block would
take 14 GB. Even the most optimistic (and compact) 30 MB size would
severely increase centralization and decrease stability and accessibility to
the Bitcoin network.

• To retain the equilibrium in terms of miner profit (roughly $65,000 USD
per block), we would need 77 MB blocks at the next halving if users paid
10 cents per transaction, although this would drop with the rising price
of bitcoin, e.g. to 7.2 MB for $10k USD/BTC. This drop is tied to the
subsidy halving, however, and would ultimately fall off completely, leaving
blocks at 186 MB, regardless of USD/BTC price. If miners required a
higher profit, the block size would increase proportionately; e.g. at a
$100k USD/block profit, the block size would be nearly 300 MB.

• Arguably most problematic of all is, for the case with a low enough sub-
sidy, if there are not enough transactions in the mempool at the time,
there is no reason for miners to find a new block, and the blockchain will

21There is no reason for users to pick a fee higher than the minimum, if there is no risk of
the transaction being “bumped” by a higher-paying transaction. For sufficiently large blocks,
everybody ends up paying the minimum fees until such a time as the transaction throughput
beginning to exceed the block size.

24

25 Conclusions

effectively grind to a halt until enough value has accumulated in the mem-
pool. This results not only in higher centralization and unpredictability,
but also renders the premise of “most work secures the chain” ineffective,
because miners would now profit from remining the chain tip block(s)
while waiting, and it would decrease the difficulty, lowering the overall
security of the chain.

Removing this assumption alleviates most of these issues, but results in a
competitive mempool market with “winners” and “losers”:

• Transactions will approach a fee rate individually defined by their respec-
tive creators. The miner profit would vary, depending on mempool size,
fee rate estimator precision and accuracy, and value of transacting. Users
would weigh speed to be confirmed vs cost, just as they are now.

• The bitcoins per block received by miners would reach an equilibrium
related to the aggregate value of transacting, as well as the transaction
throughput. It would not directly satisfy miner profit requirements, but
it would be far better than “minimum fee rate × weight”.

• The mempool would very seldomly be empty, if ever, removing the prob-
lem with miners “pausing” their equipment due to a lack of profitable
transactions once the subsidy has become a less significant part of the
miner profits.

A full mempool results in a number of issues, some of which can be alleviated
to a certain extent by optimizing fee rate estimators, and educating users on
how fees work, e.g. via improved UI elements in wallet software.

A high fee rate would lead to a decrease in adoption rate, but with layer
2 technology like Lightning Network, higher fees would be more acceptable, as
they go from per-transaction fees to per-charge fees over many transactions.

CHAPTER

SIX

ACKNOWLEDGEMENTS

Thank you to DG Lab for providing the funding behind this paper.
Special thanks to Nicolas Dorier, Anditto Heristyo, and Max Justicz for

feedback on content and language.

26

APPENDIX

A

DERIVATION OF FEE FUNCTION GIVEN IN
EQUATION 2.3

From Equation (2.3),

f(y, Z) =
1

4
1.1b

y
0.95Z c satoshi/ω

• When a user creates a new transaction, they look at the mempool and
finds the fee that would put their transaction at the bottom 5% point to
minimize their cost, with a minimum 10% increase in fees compared to
the closest competing transaction at the threshold.

• If no transaction exists (y = 0) or if the mempool is smaller than 95% of
a block (y < 0.95Z), the transaction uses a 1 satoshi per byte (1

4 satoshi
per weight unit) fee (the minimum required to be relayed by nodes, at this
point in time).

• The above condition applies for the first 0.95Z weight units, after which
the user will pick a 10% higher fee than the competing transaction (which
is initially at 1.0 sat/b), i.e. 1.0 · 1.1 = 1.1 (y = 0.95Z).

• After an additional 0.95Z weight units (y = 2 · 0.95Z), we have filled
the available 95% with 1

41.1 fee rate transactions, and as such, a new
transactor will pick a 10% higher fee, i.e. 1

41.1 · 1.1 = 1
41.1

2.

• We apply induction to derive the generalized f(y, Z) = 1
41.1

b y
0.95Z c.

27

APPENDIX

B

IMPACT OF SUBSIDY HALVING

Looking at miner revenue per block for the last year22, the revenue is around 14
bitcoin per block, with peaks around 16.5 and has a lowest point around 12.8.

Table B.1 shows how big a portion of miner fees are made up by the subsidy.
It assumes that the miners will receive the same amount of bitcoin per block, i.e.
14 bitcoin. While this assumption is most likely incorrect, it provides us with
an example of how things will evolve, if the miner revenue remains somewhat
stable. The table shows that less than 11% of miner fees are from transaction
fees. In the next subsidy halving in three years in 2020, this will jump by
roughly 45%. At the next halving in 2024, it will be over 77%, and the subsidy
will make up less than 10% come 2032.

Table B.2 removes the assumption of bitcoin revenue and instead assumes
miners receive approximately $65,000 USD per block instead, and also assumes
that fees make up 11% of the total revenue (with a minimum cap of total profit
set to 0.01 BTC). Again, it must be noted that these assumptions are arbitrary,
and only serve to give an idea of how things would evolve under the given
parameters. The bitcoin price that must follow for this to apply is listed as well
in the right-most column. The lower limit and the price requirement ends up
capping the bitcoin price at $6.5 million USD. In this scenario, the user fees
still comprise over 50% of the miner revenue, although this begins at a later
date (2064, 47 years in the future); this is based on the 0.01 BTC minimum
assumption, though, which if adjusted will move the point in time at which
this takes effect. E.g. with a 1 bitcoin minimum assumption, the fees would
comprise over 50% of the miner revenue from the 2036 halving in 19 years.

Table B.3 shows the scenario where the fees grow by 5% each subsidy halving,
and how this would affect e.g. the bitcoin price and revenue in terms of bitcoin.
Again note that the $65,000 USD per block and 5% growth assumptions are
arbitrary. The price peaks, and the revenue hits its lowest point, in 2040, at
which point the 5% increase in fees outpaces the revenue lost from subsidy
halving.

22https://www.smartbit.com.au/charts/miner-revenue-per-block

28

29 Impact of subsidy halving

Subsidy Year Bitcoin in fees % Fees
12.50000000 2016 1.50000000 10.71429%
6.25000000 2020 7.75000000 55.35714%
3.12500000 2024 10.87500000 77.67857%
1.56250000 2028 12.43750000 88.83929%
.78125000 2032 13.21875000 94.41964%
.39062500 2036 13.60937500 97.20982%
.19531250 2040 13.80468750 98.60491%
.09765625 2044 13.90234375 99.30246%
.04882813 2048 13.95117188 99.65123%
.02441406 2052 13.97558594 99.82561%
.01220703 2056 13.98779297 99.91281%
.00610352 2060 13.99389648 99.95640%
.00305176 2064 13.99694824 99.97820%
.00152588 2068 13.99847412 99.98910%
.00076294 2072 13.99923706 99.99455%
.00038147 2076 13.99961853 99.99728%
.00019073 2080 13.99980927 99.99864%
.00009537 2084 13.99990463 99.99932%
.00004768 2088 13.99995232 99.99966%
.00002384 2092 13.99997616 99.99983%
.00001192 2096 13.99998808 99.99991%
.00000596 2100 13.99999404 99.99996%
.00000298 2104 13.99999702 99.99998%
.00000149 2108 13.99999851 99.99999%
.00000075 2112 13.99999925 99.99999%
.00000037 2116 13.99999963 100.00000%
.00000019 2120 13.99999981 100.00000%
.00000009 2124 13.99999991 100.00000%
.00000005 2128 13.99999995 100.00000%
.00000002 2132 13.99999998 100.00000%
.00000001 2136 13.99999999 100.00000%
.00000001 2140 13.99999999 100.00000%
.00000000 2144 14.00000000 100.00000%

Table B.1: Portion of miner profit from subsidy vs fees, assuming a steady
revenue of 14 bitcoin per block.

30 Impact of subsidy halving

Subsidy Year Fees Revenue % Fees BTC price
12.50000000 2016 1.54494375 14.04494375 11.00000% $4,628
6.25000000 2020 .77247188 7.02247188 11.00000% $9,256
3.12500000 2024 .38623594 3.51123594 11.00000% $18,512
1.56250000 2028 .19311797 1.75561797 11.00000% $37,024
.78125000 2032 .09655898 .87780898 11.00000% $74,048
.39062500 2036 .04827949 .43890449 11.00000% $148,096
.19531250 2040 .02413975 .21945225 11.00000% $296,192
.09765625 2044 .01206987 .10972612 11.00000% $592,384
.04882813 2048 .00603494 .05486306 11.00000% $1,184,768
.02441406 2052 .00301747 .02743153 11.00000% $2,369,536
.01220703 2056 .00150873 .01371577 11.00000% $4,739,072
.00610352 2060 .00389648 .01000000 38.96484% $6,500,000
.00305176 2064 .00694824 .01000000 69.48242% $6,500,000
.00152588 2068 .00847412 .01000000 84.74121% $6,500,000
.00076294 2072 .00923706 .01000000 92.37061% $6,500,000
.00038147 2076 .00961853 .01000000 96.18530% $6,500,000
.00019073 2080 .00980927 .01000000 98.09265% $6,500,000
.00009537 2084 .00990463 .01000000 99.04633% $6,500,000
.00004768 2088 .00995232 .01000000 99.52316% $6,500,000
.00002384 2092 .00997616 .01000000 99.76158% $6,500,000
.00001192 2096 .00998808 .01000000 99.88079% $6,500,000
.00000596 2100 .00999404 .01000000 99.94040% $6,500,000
.00000298 2104 .00999702 .01000000 99.97020% $6,500,000
.00000149 2108 .00999851 .01000000 99.98510% $6,500,000
.00000075 2112 .00999925 .01000000 99.99255% $6,500,000
.00000037 2116 .00999963 .01000000 99.99627% $6,500,000
.00000019 2120 .00999981 .01000000 99.99814% $6,500,000
.00000009 2124 .00999991 .01000000 99.99907% $6,500,000
.00000005 2128 .00999995 .01000000 99.99953% $6,500,000
.00000002 2132 .00999998 .01000000 99.99977% $6,500,000
.00000001 2136 .00999999 .01000000 99.99988% $6,500,000
.00000001 2140 .00999999 .01000000 99.99994% $6,500,000
.00000000 2144 .01000000 .01000000 100.00000% $6,500,000

Table B.2: Bitcoin fees and price given a set revenue of $65,000 USD per block,
where fees are locked at 11%, with a minimum revenue of 0.01 BTC (which is
taken from fees, which is why they begin to rise in 2060).

31 Impact of subsidy halving

Subsidy Year Fees Revenue % Fees BTC price
12.50000000 2016 1.54494375 14.04494375 11.00000% $4,628.00
6.25000000 2020 1.62219094 7.87219094 20.60660% $8,256.91
3.12500000 2024 1.70330048 4.82830048 35.27743% $13,462.29
1.56250000 2028 1.78846551 3.35096551 53.37165% $19,397.39
.78125000 2032 1.87788878 2.65913878 70.62019% $24,444.00
.39062500 2036 1.97178322 2.36240822 83.46497% $27,514.30
.19531250 2040 2.07037238 2.26568488 91.37954% $28,688.90
.09765625 2044 2.17389100 2.27154725 95.70089% $28,614.86
.04882813 2048 2.28258555 2.33141368 97.90564% $27,880.08
.02441406 2052 2.39671483 2.42112889 98.99162% $26,846.98
.01220703 2056 2.51655057 2.52875760 99.51727% $25,704.32
.00610352 2060 2.64237810 2.64848162 99.76955% $24,542.36
.00305176 2064 2.77449701 2.77754876 99.89013% $23,401.93
.00152588 2068 2.91322186 2.91474774 99.94765% $22,300.39
.00076294 2072 3.05888295 3.05964589 99.97506% $21,244.29
.00038147 2076 3.21182710 3.21220857 99.98812% $20,235.30
.00019073 2080 3.37241845 3.37260919 99.99434% $19,272.91
.00009537 2084 3.54103937 3.54113474 99.99731% $18,355.70
.00004768 2088 3.71809134 3.71813903 99.99872% $17,481.86
.00002384 2092 3.90399591 3.90401975 99.99939% $16,649.51
.00001192 2096 4.09919571 4.09920763 99.99971% $15,856.72
.00000596 2100 4.30415549 4.30416145 99.99986% $15,101.66
.00000298 2104 4.51936327 4.51936625 99.99993% $14,382.55
.00000149 2108 4.74533143 4.74533292 99.99997% $13,697.67
.00000075 2112 4.98259800 4.98259875 99.99999% $13,045.40
.00000037 2116 5.23172790 5.23172827 99.99999% $12,424.19
.00000019 2120 5.49331430 5.49331448 100.00000% $11,832.56
.00000009 2124 5.76798001 5.76798010 100.00000% $11,269.11
.00000005 2128 6.05637901 6.05637906 100.00000% $10,732.49
.00000002 2132 6.35919796 6.35919799 100.00000% $10,221.41
.00000001 2136 6.67715786 6.67715787 100.00000% $9,734.68
.00000001 2140 7.01101575 7.01101576 100.00000% $9,271.12
.00000000 2144 7.36156654 7.36156654 100.00000% $8,829.64

Table B.3: Bitcoin fees and price given a set revenue of $65,000 USD per block,
where fees grow by 5% each subsidy halving.

	Introduction
	Block and mempool model
	Block size, miner profit, and user cost
	10 BTC per block assumption
	$65,000 USD per block assumption

	Interruptions and consequences of mempool exhaustion
	The for-profit and essentially free reorganization attack
	Mining cost vs transaction (fee) throughput

	A note on subsidy halving

	Transactions and the mempool as a market
	Transaction throughput and mempool market
	Overly conservative fee estimators
	User interface
	Time-locked smart contract expirations
	Distributed attack on time-locked contracts

	Fee rate optimization via the mempool state
	Automatic transaction bumping via RBF
	Combining fee rate estimators
	Results

	Conclusions
	Acknowledgements
	Derivation of fee function given in Equation 2.3
	Impact of subsidy halving

